

The term 'Turnstile' is applied to a class of antennas comprising pole mounted 'crossed' radiating elements fed in phase quadrature.

The horizontally polarized Superturnstile employs the familiar "Batwing" radiators and is pictured in Fig 1.

Features of the designs are:

- Suitable for top mounting on existing towers
- Simple and economical installation
- Wide bandwidth
- Radome protection available for severe weather conditions
- Inherent lightning protection
- Wide range of gains available
- Available for single or double main transmission line
- Multi channel options available

Relative field 02040608

The Superturnstile

The Superturnstile is generally employed as an omnidirectional (Fig 2), or occasionally a figure eight, horizontally polarized transmitting antenna and provides excellent and reliable service in the Low, Mid and High Bands. Most frequently used as a medium power single channel antenna we also offer custom designs for two or even three channel operation. The antenna is equally suited to both analogue and digital transmissions.

Fig. 2 Omnidirectional HRP

Fig. 1 Horizontally polarized Superturnstile array

Design

Each bay of the antenna consists of four galvanized radiating elements of the familiar Batwing shape. The radiators are mounted at 90 degrees with respect to one another around the tubular steel supporting pole. The top and bottom of each radiator are both solidly connected to the pole, thereby forming a very strong and robust mechanical assembly. The direct connections also give a very low impedance path to ground and afford excellent protection against lightning discharges.

Available Apertures

The required total antenna gain is achieved by stacking the appropriate number of bay assemblies one upon the other, spaced approximately one wavelength apart. Available apertures with their corresponding gains are shown in Fig 3.

Three standard sizes of Batwing radiator assemblies build up the complete range of Superturnstiles covering the Low, Mid and High Band VHF broadcast channels. Custom radiator designs are required in some instances for dual channel working.

Available Apertures Cont.

The maximum number of bays generally considered to be both mechanically and economically feasible for each band is:

Low Band TV	41 - 68 MHz 6 Ba	iys
Mid Band TV	68 - 88 MHz 8 Ba	iys
High Band TV	174 - 216 MHz	16 Bays

These maximum arrays occupy approximately 30m of vertical aperture for the Low and Mid Bands and approximately 25m for the High Band. Composite arrays for antennas operating in different bands may be mounted on the same pole. The maximum number of bays for each channel is restricted by the same mechanical and economic considerations, so that the total aperture does not exceed approximately 30m. In exceptional circumstances larger apertures may be made feasible by guying the antenna pole. This approach may sometimes provide a more economic solution for the overall tower/antenna package even for smaller apertures.

Distribution Harness

To provide an omnidirectional azimuth pattern the four batwings in each bay are fed with equal amplitude currents in phase quadrature, 0°, 90°, 180°, and 270° via 75ohm cables. The four or eight way power dividers feeding individual bays or pairs of bays are connected together by air spaced semi flexible cables to main input power dividers. Appropriate cable sizes and input networks are provided for the power rating required and depending on whether the antenna is to be used with a single or dual main transmission line. Input power ratings for standard antennas are given in Fig 3.

To ensure that the inside of the coaxial distribution harness remains dry and clean it is designed to be pressurized up to the output of the bay power dividers. Pressurization is normally carried out via the main transmission line.

			erture ninal)	*Mean Effective	**Input Power Rating	Mean ERP for Max Rated	Input Flang for Max
		ft	(m)	Gain	(d = 67500 00 / 5 (0 (≡ 0))	Input Power	Power Rating
Low Band (Ch. 2 and 3)	2	37	(11.3)	3.3 dB	20 kW	43 kW	1 5/8 EIA
Mean frequency	2 4	74	(22.6)	6.0 dB	40 kW	159 kW	3 1/8 EIA
53 MHz.	6	111	(33.8)	7.5 dB	60 kW	341 kW	3 1/8 EIA
Mid Band	2	26	(7.9)	3.4 dB	18 kW	39 kW	1 5/8 EIA
(Ch. 4 thru 6)	4	52	(15.8)	6.1 dB	36 kW	145 kW	3 1/8 EIA
Mean frequency	6	78	(23.8)	7.6 dB	54 kW	311 kW	3 1/8 EIA
77 MHz.	8	104	(31.7)	8.7 dB	72 kW	534 kW	6 1/8 EIA
High Band	2	10	(3.0)	3.4 dB	9 kW	20 kW	1 5/8 EIA
(Ch. 7 thru 13)	2 4	20	(6.1)	6.1 dB	18 kW	73 kW	3 1/8 EIA
Mean frequency	6	30	(9.1)	7.7 dB	27 kW	158 kW	3 1/8 EIA
194 MHz.	6 8	40	(12.2)	8.7 dB	36 kW	269 kW	3 1/8 EIA
	10	50	(15.2)	9.7 dB	45 kW	422 kW	3 1/8 EIA
	12	60	(18.3)	10.5 dB	54 kW	600 kW	6 1/8 EIA
	16	80	(24.4)	11.4 dB	72 kW	985 kW	6 1/8 EIA

Fig 3. Power Ratings, E.R.P.'s and Apertures of standard omnidirectional Superturnstile antennas

*Including allowance for null fill.

**Ambient Temperature: 95°F

The power rating refers to analog transmission peak sync power and assumes a visual to aural ratio of 5 to 1. Clearly for single channel working the mean ERP capability considerably exceeds FCC licensed values in many cases. Andrew will be pleased to advise on the rating for digital and for multi-channel systems.

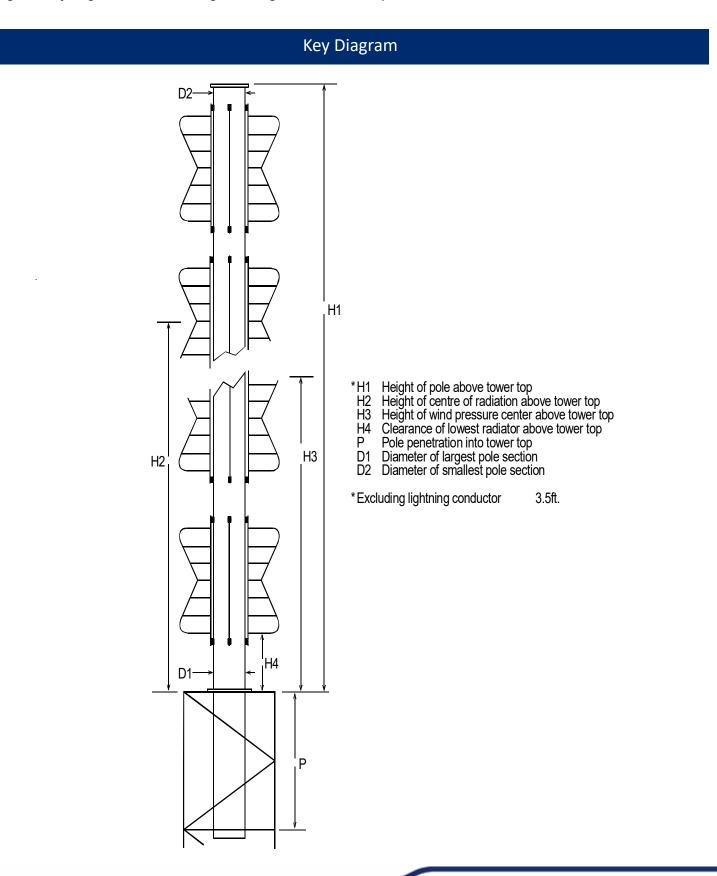
Weather Protection

The impedance of each individual radiator is around 75 ohms and is readily matched with standard coaxial feed lines. Because the impedance is low, ordinary icing has a negligible effect on performance. Radome protection may be supplied for conditions of severe icing. We recommend this form of de-icing in preference to electrical heating, which can be both unreliable and costly to operate. An additional advantage offered by radomes is the ability to pigment the fiberglass sections to customer requirements. Bays may be coloured differently in order to comply with aviation warning regulations, thereby eliminating the need for continual repainting.

Wind Loading

The pole itself, like the batwing elements, is galvanized steel. The diameter of each section depends on the number of bays and the design wind speed required. Standard antennas are designed for a wind speed of 110 mph without ice. With 1 inch of radial ice the design wind speed is reduced to 80 mph. Figs 5 & 6 give mechanical data, including aerodynamic areas for the various antennas.

Fig. 4 Physical dimensions for standard Superturnstiles


Physical Dimensions															
	No. of Bays	ft	H1 (m)	ft	H2 (m)	ft	H3 (m)	l ft	⊣4 (m)	ft	p (m)	C ins	01 (m)	D2 ins	
Low Band Channel 2	2 4 6	36 70 104	(11.0) (21.4) (31.8)	19 36 53	(5.8) (11.0) (16.2)	18.0 34.0 40.0	(10.4)	4.5 4.5 4.5	(1.4) (1.4) (1.4)	6.6 9.8 13.1	(2) (3) (4)	10.75 16.0 24.0	(0.27) (0.41) (0.61)	10.75 10.75 10.75	(0.27) (0.27) (0.27)
Channel 3	2 4 6	33 65 96	(10.2) (19.8) (29.4)	18 33 49	(5.4) (10.2) (15.0)	17.0 31.0 45.0	(9.6)	4.3 4.3 4.3	(1.3) (1.3) (1.3)	6.6 9.8 13.1	(2) (3) (4)	10.75 12.75 24.0	(0.27) (0.34) (0.61)	10.75 10.75 10.75	(0.27) (0.27) (0.27)
Mid Band Channel 4	2 4 6	31 60 88	(9.4) (18.2) (27.0)	16 31 45	(5.0) (9.4) (13.8)	15.0 30.0 43.0	(9.1)	4.0 4.0 4.0	(1.2) (1.2) (1.2)	6.6 9.8 13.1	(2) (3) (4)	10.75 12.75 16.0	(0.27) (0.34) (0.41)	10.75 10.75 10.75	(0.27) (0.27) (0.27)
Channel 5	2 4 6 8	27 52 77 101	(8.2) (15.8) (23.4) (31.0)	14 27 39 52	(4.4) (8.2) (12.0) (15.8)	13.0 26.0 37.0 49.0	(7.9) (11.3)	4.0 4.0 4.0 4.0	(1.2) (1.2) (1.2) (1.2)	6.6 9.8 13.1 13.1	(2) (3) (4) (4)	8.63 10.75 16.0 16.0	(0.22) (0.27) (0.41) (0.41)	8.63 8.63 8.63 8.63	(0.22) (0.22) (0.22) (0.22)
Channel 6	2 4 6 8	25 48 71 93	(7.6) (14.6) (21.6) (28.6)	13 25 36 48	(4.1) (7.6) (11.1) (14.6)	12.0 23.0 34.0 45.0	(7.0) (10.4)	3.6 3.6 3.6 3.6	(1.1) (1.1) (1.1) (1.1)	6.6 9.8 13.1 13.1	(2) (3) (4) (4)	8.63 10.75 16.0 16.0	(0.22) (0.27) (0.41) (0.41)	8.63 8.63 8.63 8.63	(0.22) (0.22) (0.22) (0.22)
High Band Mean frequency 194 MHz.	2 4 6 8 10 12 16	11 21 31 41 51 61 81	(3.4) (6.4) (9.4) (12.5) (16.5) (18.6) (24.7)	6 11 16 21 26 31 41	(1.8) (3.4) (4.9) (6.4) (7.9) (9.4) (12.5)	6.0 11.0 15.5 20.5 25.0 30.0 40.0	(3.4) (4.7) (6.7) (7.6) (9.1)	2.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75	(0.8) (0.8) (0.8) (0.8) (0.8) (0.8) (0.8)	3.3 6.6 6.6 6.6 9.8 13.1	(1) (2) (2) (2) (2) (3) (4)	5.5 5.5 8.63 8.63 10.75 10.75 14.0	(0.14) (0.14) (8.63) (8.63) (10.75) (10.75) (14.0)	5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	(0.14) (0.14) (0.14) (0.14) (0.14) (0.14) (0.14)

These figures are for standard antennas, special circumstances may require the use of non-standard support pole material.

See diagram on following page for key

Fig. 4b Key diagram for dimensions given in Fig. 4 for standard Superturnstiles

Alan Dick Broadcast Ltd Tel: +0044 1242 820972 Email: sales@alandickbroadcast.com www.alandickbroadcast.com

In pursuance of continual product improvement, Alan Dick reserve the right to change specifications without prior notice.

Fig 5. Weights and aerodynamic areas of standard Superturnstile antennas

Weights and Aerodynamic area									
		WE	IGHT	TOTAL AERODYNAMIC AREA					
	No. of bays	Without radome	With radome	Without ice with or without radome	1inch radial Ice				
		Kg	Kg	ft ²	ft ²				
Low Band Channel 2	2 4 6	1207 3301 6455	1253 3399 6626	65 138 227	96 197 320				
Channel 3	2 4 6	1080 3530 6387	1244 3623 6543	57 123 204	84 175 288				
Mid Band Channel 4	2 4 6	1045 2595 5188	1083 2677 5319	52 109 174	76 155 242				
Channel 5	2 4 6 8	782 1846 3387 5522	810 1905 3488 5681	40 84 135 189	58 120 188 266				
Channel 6	2 4 6 8	740 1540 3043 5120	766 1596 3137 5224	36 80 127 177	53 114 176 249				
FM Band	2 4 6 8 10	575 1169 2181 3420 5350	599 1221 2265 3540 5506	30 64 103 145 186	47 96 155 218 276				
High Band Ch. 7 thru 13	2 4 6 8 10 12 16	148 297 620 1045 1448 2156 3632	153 307 646 1087 1510 2234 3753	14 29 46 63 83 102 153	23 48 77 102 135 165 244				

Note:

The above figures are for standard antennas, special circumstances may require the use of non standard support pole material which could modify both weights and areas. The aerodynamic wind area is that to which appropriate force coefficients have already been applied. To calculate shear force and overturn moments it is necessary to apply the appropriate dynamic wind pressure (and the height of the pressure centre above the tower top (Fig 4).